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Abstract—With the development of foundation models, ad-
vanced research explores the potential of vision-language mod-
els (VLMs) for out-of-distribution (OOD) detection. In particular,
methods that generate outliers for regularized prompt learning
have shown promising results in few-shot settings. However,
existing methods that rely solely on visual modalities struggle to
synthesize outliers semantically analogous to in-distribution (ID)
data, neglecting near OOD scenarios. Notably, recent large lan-
guage models (LLMs) exhibit a deep real-world understanding,
enabling the generation of near textual outliers. Inspired by
this, we propose an OOD detection framework named Text-
Augmented Cues (TAC), which integrates expert knowledge from
LLMs into the prompt learning of VLMs. Specifically, we first
design LLMs query templates to generate outlier categories based
on Visual Similarity. Then, LLMs are further leveraged to syn-
thesize the semantic representations of ID and outlier categories
based on Feature Distinctiveness. Subsequently, we incorporate
visual-textual information of ID categories for prompt learning,
regularized by textual outliers. Experimental results demonstrate
that TAC significantly outperforms state-of-the-art (SOTA) VLM-
based OOD detection methods in few-shot scenarios. The code
is available at https://github.com/njustkmg/ICDM25-TAC.

Index Terms—out-of-distribution detection, vision-language
models, prompt learning, large language models.

I. INTRODUCTION

Deep learning models perform well in a closed-world set-
ting, assuming that both training and testing samples come
from the same distribution. However, models fail to generalize
effectively to out-of-distribution (OOD) data when deployed in
open-world scenarios [1], [2], [3], [4]. This phenomenon may
lead to severe consequences, particularly in critical domains
such as autonomous driving [5], [6] and medical diagnosis [7].
Consequently, effective OOD detection is essential to preserve
model reliability and ensure trustworthy decision-making.

With the emergence of vision-language models (VLMs)
renowned for their remarkable generalization across diverse
tasks [8], [9], [10], recent studies have increasingly leveraged
these models for few-shot OOD detection [11], [12]. In
particular, several methods excel by generating visual outliers
for regularized prompt learning [13], [14], [15], demonstrating
superior detection efficacy. These methods generate outliers by
exploiting redundant background cues in in-distribution (ID)
visual data. However, such background information typically
differs significantly from the semantic features of ID cate-
gories. As illustrated in Fig. 1 (a), the foreground depicts
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a horse, whereas the background consists of trees or grass,
which are inherently easier for the model to distinguish.
Consequently, these visual outliers generally attain lower pre-
dictive probabilities for ID classes. This leads to these methods
primarily emphasizing the integration of far OOD knowledge
while neglecting near OOD scenarios. Indeed, near OOD
represents the most challenging aspect of OOD detection, as it
necessitates distinguishing subtle semantic shifts that are more
prone to misleading the model.

Recent research suggests that selecting more challenging
outlier samples facilitates the model in establishing a more
robust decision boundary between ID and OOD data [16], [17].
Meanwhile, pre-trained generative models, such as GAN [18]
and diffusion model [19], have been explored for their poten-
tial in generating challenging outliers [20], [21], [22]. While
these approaches perform well on small datasets, they be-
come computationally expensive and resource-intensive when
applied to large-scale datasets. Furthermore, the reliance on
pre-trained models introduces inductive bias that leads to the
generation of less diverse outliers, which hinders the model’s
ability to capture the full spectrum of real-world scenarios.

Leveraging the alignment capabilities of VLMs, a certain
interchangeability exists between textual and visual data within
their feature spaces. This naturally inspires our approach:
given the difficulty of generating challenging visual outliers,
might challenging textual outliers be synthesized to enhance
VLMs regularization training for OOD detection? Recent
advancements in large language models (LLMs) [23], [24],
characterized by extensive pretraining on large datasets and
autoregressive objectives, have endowed them with superior
generative capabilities and a profound understanding of the
real world [25], [26], [27]. This enables LLMs to generate
high-quality outliers with nuanced semantic variations from ID
categories. Fig. 1 (b) illustrates outliers generated by the LLMs
for the horse category, exhibiting high predictive probabilities
for ID class, indicating the model’s diminished capacity to
distinguish these outliers from horse instances.

Textual data not only addresses the challenge of generating
near OOD outliers but also compensates for the limited
number of ID visual data. Specifically, VLM-based prompt
learning is often constrained in few-shot scenarios [13], where
limited visual data impedes effective learning of category-
specific features. This limitation leads to spurious correla-
tions between category labels and background information,
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Fig. 1: Illustration of two types of outlier generation. The original images are from ImageNet-1k. Visual outliers generated
using CLIP exhibit a significant semantic shift from the ID label “horse” and have a low prediction probability (left green
numbers). In contrast, outlier instances in the text modality, generated by our method, demonstrate a subtle semantic shift and
have a high prediction probability (right red numbers) for the ID label “horse”.

undermining the model’s robustness in downstream tasks and
leading to low-confidence predictions for ID categories [28].
Additionally, expanding ID datasets by incorporating extensive
image annotations incurs significant manual labeling costs. By
leveraging LLMs, we can efficiently generate textual semantic
information for ID categories to substitute visual data, guiding
VLMs to focus on the intrinsic features of categories.

Building upon the observed insights, we propose a
novel prompt learning framework named Text-Augmented
Cues (TAC), which harnesses textual semantic information
to refine ID and OOD representation learning. At the high
level, TAC leverages the comprehensive understanding of
the real world inherent in LLMs to inject authentic textual
information into VLMs. Specifically, we first design query
templates for LLMs based on the principle of Visual Similarity,
enabling LLMs to identify outlier categories that share visual
characteristics with the ID categories. Then, LLMs are further
employed to synthesize the semantic representations of ID and
outlier categories, guided by the principle of Feature Distinc-
tiveness. It ensures that the generated semantic representations
of the categories are well-defined and distinct from each other.
Subsequently, TAC incorporates visual-textual information of
ID categories for prompt learning, regularized by textual
outliers, facilitating a more robust decision boundary. The
main contributions of this work are summarized as follows:

• Principally, we emphasize the limitations of VLM-based
prompt learning for OOD detection that rely solely on
visual modalities and propose leveraging the expertise of
LLMs to guide VLMs.

• Technically, we propose Text-Augmented Cues (TAC),
a framework utilizing LLMs to generate challenging
outliers, combined with a collaborative training strategy
for ID-OOD differentiation.

• Empirically, TAC achieves 2.04% and 1.90% improve-
ments on the far and near OOD benchmarks in FPR95
(in Section V-A) respectively, validating its effectiveness.

II. RELATED WORK

A. Out-of-distribution detection

Traditional OOD detection grounded in the MSP [29] score
as a baseline has been extended through various scoring
methods, including Energy [30] scores and MaxLogit [31]
scores, which were built on a single modality (e.g. ResNet [32]
as backbone) to improve detection performance. With the
remarkable performance of VLMs in downstream tasks gain-
ing widespread attention, several studies have explored their
application in enhancing OOD detection. MCM [33] leverages
maximum concept matching scores between image and tex-
ture features based on CLIP [16] for OOD detection during
inference. CLIPN [34] trains a negative text encoder using
annotated auxiliary datasets, enabling CLIP to better under-
stand the concept of “no” class prompts. Similarly, ZOC [35]
develops a text decoder trained to generate candidate sets
of unknown classes for images. EOE [36] leverages LLMs
to generate potential OOD categories, mitigating the con-
straints of closed-set labels on the discrimination capabilities
of CLIP. However, these methods mainly address zero-shot
scenarios, leaving OOD detection in a few-shot setting un-
derexplored. For this purpose, ID-like [13] and LoCoOp [14]
adopt prompt learning techniques, extracting ID-irrelevant
background features from ID images as visual outliers to
regularize training. SCT [15] further introduces an adaptive
modulation factor calibration strategy to address the issue of
inaccurate foreground-background separation faced by these
prompt learning methods. Additionally, NegPrompt [11] and
LSN [12] rely exclusively on ID images to train a set of
negative prompts that capture the non-class-related semantics.

B. Foundation Models

Foundation models, pre-trained on large-scale and diverse
datasets, demonstrate remarkable performance across a wide
range of downstream tasks. LLMs built on the Transformer
architecture [37] and autoregressive training have achieved



breakthroughs in contextual understanding and text generation
in natural language processing. In particular, GPT-4 [38] uti-
lizes a Mixture-of-Experts (MoE) architecture and multimodal
capabilities, setting new standards in text generation and cross-
modal reasoning. LLa-MA [23] excels in inference through ef-
ficient training and low-bit quantization, while the Claude [39]
series enhances alignment capabilities through constitutional
AI. Deep-Seek-V3 [24] built on 14.8T tokens of pre-training
data with an MoE architecture, reaches benchmark levels
comparable to GPT-4. Meanwhile, VLMs leverage contrastive
learning to effectively align visual and textual modalities,
enabling cross-modal reasoning and representation learning.
CLIP [8], FILIP [10], and ALIGN [9] employ contrastive
loss to align text and image representations within a shared
feature space. These methods adopt a dual-stream architecture
to extract text and image features separately, maximizing
the similarity of matching pairs and reducing their feature
distance. Notably, CLIP trained on 400 million image-text
pairs, demonstrates exceptional performance across multiple
computer-vision benchmarks.

III. PRELIMINARIES

A. Problem Definition

Let D = {(xi, yi)}Ni=1 denote the ID training dataset, where
xi ∈ X represents the image and yi ∈ Y is its corresponding
label. Additionally, we have an unlabeled outlier dataset Z =
{zi}Mi=1 for regularized training. During testing, we encounter
samples from both ID test set X̃ and OOD test set Xout, where
the label space of X̃ is consistent with Y , while the label
space of Xout is disjoint from Y . Our objective is to train a
robust classifier that accurately classifies ID categories while
determining whether a test sample belongs to the label space
Y , leveraging the training datasets D and Z .

B. Vanilla Prompt Learning Framework

In vanilla prompt learning, we employ a dual-encoder
architecture consisting of a visual encoder and a text encoder.
For a given ID image x ∈ X , the visual encoder I(·) extracts
its feature embedding I(x) ∈ Rd, where d denotes the feature
dimension. The text encoder T (·) processes a prompt template
pi, which consists of learnable context vectors ω and the i-th
class label yi to generate the class-specific prompt embedding.
The prediction probability of i-th class is formulated as:

p(yi|x;ω) =
exp(sim(I(x), T (pi))/τ)∑c
j=1 exp(sim(I(x), T (pj))/τ)

, (1)

where sim(·) denotes the cosine similarity function measuring
feature alignment, τ > 0 is a temperature scaling factor
controlling the prediction sharpness, and c denotes the total
number of classes in the training set.

C. Training Objective

During training, the model leverages the ID dataset D and
the outlier dataset Z to learn the data distribution and establish
decision boundaries. For ID samples (xi, yi) ∈ D, the model
maximizes the prediction confidence for the correct label:

argmax
y∈Y

p(y|xi;ω) = yi. (2)

For each outlier sample zi ∈ Z , the model minimizes the
prediction confidence across all classes:

max
y∈Y

p(y|zi;ω) ≈ 1

c
. (3)

This training strategy ensures effective discrimination be-
tween ID and OOD data, establishing a foundation for subse-
quent OOD detection tasks.

IV. METHODOLOGY

In this work, we focus on leveraging LLMs to generate
representations in the text modality, which assist in training the
ID prompts and enhance OOD detection performance. During
this research, we encounter two primary challenges: 1) How to
effectively utilize the capabilities of LLMs to generate ID and
outlier representations? 2) How to design a training process
that enables the model to distinguish the distribution between
ID and OOD data? To address these challenges, we develop
two key strategies: an effective semantic representation gen-
eration approach and a collaborative training framework that
bridges modality and category distributions. The framework
of our proposed method is depicted in Fig. 2.

A. Semantic Representation Acquisition

We propose a multi-stage approach that harnesses the gen-
erative capacity of LLMs to synthesize semantic descriptions.
Through the meticulous design of prompts emphasizing both
Visual Similarity and Feature Distinctiveness, we generate
informative outlier labels and extract categorical features that
capture nuanced semantic distinctions.

Outlier Label Acquisition. We initially design the LLMs
query template based on the Visual Similarity principle to
obtain the outlier labels set Yout. The principle aims to identify
categories that are visually similar to known classes but seman-
tically distinct. The LLMs query template, illustrated in Fig. 3,
where Y indicates the set of ID class labels and yi ∈ Y . In this
prompt, visual resemblance emphasizes perceptual similarity,
while taxonomically distinct underscores semantic divergence.
We then request the LLMs to provide an outlier labels set Yout
that meets the criteria.

VLM-based Similarity Filtering. During the acquisition pro-
cess, we observe a few outlier labels semantically misaligned
with their native classes yet congruent with other ID labels.
For instance, LLMs generate “cargo ship” as an outlier label
for “warplane”, despite its semantic proximity to the ID
class “container ship”. Therefore, we implement a semantic
similarity threshold filtering method, as illustrated in Fig. 3.
Specifically, for each ŷi ∈ Yout, we compute similarities sij
with all yj ∈ Y using the VLM, and obtain the maximum
similarity as its value s̃i. We then obtain the similarity set
S̃ between the outlier labels and the ID label set. δ is the
predefined threshold. Outlier labels with s̃i > δ are removed,
while those with s̃i ≤ δ are retained. In the experiments, the
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Fig. 2: The framework of TAC. It comprises two phases: (a). Expert Knowledge Elicitation: Leveraging designed LLMs query
templates guided by Visual Similarity and Feature Distinctiveness, we extract discriminative textual descriptors for both ID and
potential outliers through knowledge distillation from LLMs. (b). Prompt Learning with Text-Augmented Cues: We integrate
visual-textual multimodal data for ID prompt learning, regularized by textual outliers.P AL
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Fig. 3: LLMs query template for outlier label acquisition and
VLM-based similarity filtering process.
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Fig. 4: LLMs query template for semantic representation
generation.

retained label similarities generally ranging from 0.45 to 0.85
demonstrate the semantic diversity of the generated content.

Semantic Representation Generation. In the domain of
feature-driven LLMs textual description generation, we pro-
pose a strategy based on Feature Distinctiveness principles,
aimed at enhancing data generation representativeness through

the precise capture of category-distinguishing information.
Specifically, for each ID and outlier label, we design an
LLM query template paradigm that emphasizes visual feature
disparities between categories. During the generation process,
we guide the LLMs to focus on critical features exclusively
present within the target category.

As illustrated in Fig. 4, when generating ID textual descrip-
tions, we select yi ∈ Y and yj ∈ Yout to get the ID text
dataset T in. Conversely, when generating outlier descriptions,
we reverse their roles to get the outlier text dataset T out. By
presenting k features that can be seen in the former but not in
the latter within the prompt, we motivate the LLMs to generate
text descriptions precisely centered on the distinctive visual
characteristics of yi. This feature-driven approach precisely
distills the categorical essence, refines semantic boundaries,
and enhances the discriminative fidelity of the generated
textual representations.

B. Prompt Learning with Text-Augmented Cues

We propose a novel OOD detection framework that incor-
porates visual-textual information of ID categories for prompt
learning, regularized by textual outliers. Building on the previ-
ous section, we incorporate the ID text dataset T in and outlier
text dataset T out generated by LLMs as input, along with the
ID image dataset D. By meticulously engineering the loss
function, this framework aims to optimize the model’s ability
to effectively distinguish between ID and OOD samples.

ID Feature Fusion. Let p represent the ID class prompt,
and tin ∈ T in. Given an input image x ∈ X , we define a



semantic similarity score S that dynamically fuses features
from different modalities:

S = α · sim(I(x), T (p)) + (1− α) · sim(T (tin), T (p)), (4)

where α ∈ [0, 1] is an adjustable hyperparameter, I(x) is
the image feature embedding, T (p) represents the ID prompt
feature embedding, T (tin) represents the text encoder output
for the ID text description.

The semantic similarity score S quantifies multi-modal
semantic alignment via a weighted similarity measure across
image, text, and ID prompt embeddings. A weight parameter
α is strategically introduced in S to mitigate potential modal
bias in training, consequently enabling refined cross-modal
representation learning.

ID Loss Function. We employ a standard cross-entropy loss
function to measure the discrepancy between predicted proba-
bilities and ground truth labels for ID samples. By minimizing
this loss, we guide the model’s parameter optimization, en-
hancing the discriminative capability across different classes.
Formally, the cross-entropy loss LCE is computed based on the
semantic similarity score S, defined as follows:

LCE = E[(x,y)∼D,tin∼T in]

[
− log

exp(Sx,y/τ)∑c
j=1 exp(Sj/τ)

]
, (5)

where c represents the number of classes and τ > 0 is
the temperature scaling factor that controls the sharpness of
probability distributions. The term Sx,y indicates the semantic
similarity score for the sample x and its corresponding ground-
truth label y.

Outlier Loss Function. Given the outlier dataset T out, each
outlier text feature should exhibit minimal semantic similarity
with any ID prompt embedding. We thus introduce an entropy-
based loss LEntropy for OOD regularization:

LEntropy = Etout∼T out

[
−

c∑
i=1

p(yi|tout;ω) log p(yi|tout;ω)

]
,

(6)
where tout represents outlier text samples drawn from the
dataset T out, and p(yi|tout;ω) denotes the predicted class
probability for the i-th class given the outlier text and the
learnable context vectors ω.

The entropy objective aims to enhance the semantic un-
certainty of outlier feature representations. By minimizing
the negative entropy, the loss function seeks to expand the
semantic divergence between outlier features and ID prompt
embeddings, thereby suppressing the model’s overconfidence
when confronted with OOD samples.

The overall loss function combines ID classification and
OOD discrimination:

L = LCE + λ · LEntropy, (7)

where λ ∈ R+ is a hyperparameter controlling the weight of
the OOD regularization term, thereby modulating the balance

Algorithm 1 Prompt Learning with Text-Augmented Cues
Input: Training dataset D, ID class label Y , ID text dataset
T in, Outlier text dataset T out, Image encoder I(·), Text
encoder T (·), ID Feature fusion weight α, regularization term
weight λ, Training epochs M , Batch size n, Learning rate η,
Logit scale τ
Output: Optimized prompt ω

1: Initialize learnable prompt ω
2: for epoch = 1 to M do
3: for batch = 1 to N do
4: {hj}cj=1 ← {yj ∈ Y|T (ω, yj)}cj=1

5: Sample a batch {(xi, yi)}ni=1 from D and {ti}ni=1

from T in

6: f i ← I(xi), gin
i ← T (ti)

7: Si,j ← α · f i·hj

∥f i∥·∥hj∥ + (1− α) · gin
i ·hj

∥gin
i ∥·∥hj∥

8: LCE ← − 1
n

∑n
i=1 log

exp(Sx,y/τ)∑c
j=1 exp(Si,j/τ)

9: Sample a batch {t̂i}ni=1 from T out

10: gout
i ← T (t̂i)

11: Compute LEntropy by (6)
12: Update: ω ← ω − η∇ω(LCE + λ · LEntropy)
13: end for
14: end for

between accurately capturing ID features and enhancing the
model’s robustness to OOD samples.

Algorithm 1 presents the procedure for prompt learning with
Text-Augmented Cues.

C. Test-time OOD detection

In the context of test-time OOD detection, we adopt the
Global-Local Maximum Concept Matching (GL-MCM) score
proposed by [40]. The core innovation of GL-MCM lies in its
dual-pathway architecture that synergistically integrates both
global semantic patterns and localized discriminative features.
Specifically, the score is formulated as follows:

SGL-MCM = max
y∈Y

p(y|x;ω) + max
y∈Y

p(y|x(k);ω), (8)

where x represents the global image, x(k) denotes the k-
th spatial region of image, Y is the ID class labels set, ω
represents the learnable context vectors.

The global component captures holistic semantic alignment
between the input image and predefined class concepts, while
the local component enhances sensitivity to anomalous pat-
terns in sub-regions. The OOD detector Gθ(x;Y,ω) can be
defined through SGL-MCM as follows:

Gθ(x;Y,ω) =

{
ID SGL-MCM(x) ≥ θ

OOD SGL-MCM(x) < θ
, (9)

where θ is a predefined threshold, calibrated to retain a
statistically significant percentile (e.g. 95%) of ID data scores,
following prior works [15], [36].



V. EXPERIMENTS

A. Experimental Detail

Far OOD Detection. In this work, we follow the experimen-
tal setup of MOS [41] for far OOD detection on the ImageNet-
1k [42] OOD benchmark. The ID dataset is ImageNet-1k,
which consists of 1,000 categories of labeled images. For OOD
samples, we utilize the iNaturalist [43], SUN [44], Places [45],
and Texture [46] datasets. These OOD datasets contain no
classes that overlap with the ImageNet-1k ID categories,
ensuring a robust evaluation of the model’s generalization
ability across diverse semantic and visual categories.

Near OOD Detection. For near OOD experiments, we align
with the MCM [33] setup, employing ImageNet-10 as ID
dataset and ImageNet-20 as the OOD dataset, switching them
interchangeably. ImageNet-10 consists of ten classes with
high-resolution images, enabling evaluation on more detailed
visual inputs. To facilitate near-OOD assessment, ImageNet-
20 comprises twenty classes that are semantically related to
those in ImageNet-10 (e.g., “dog” (ID) vs. “wolf” (OOD)).

Setups. In this experiment, we adopt the setup from prior
research, employing CLIP-B/16 as the backbone, with ViT-
B/16 [47] serving as the image encoder. A masked self-
attention Transformer [37] is utilized as the text encoder.
Furthermore, we integrate the LLaMA2-7B [23] model as
the LLM, configured with a temperature parameter of 0.9.
Following the hyperparameter configuration of CoOp [48], we
train the model for 50 epochs with a learning rate of 0.002, a
batch size of 32, an SGD optimizer, and a context token length
of 16, ensuring methodological consistency. The sensitivity
analysis of the unique parameters is provided in Section V-D
for reference. In the main experiments, β and δ are consistently
set to 0.05 and 0.85. For large-scale ID datasets, α is set to
0.98, respectively, while for small-scale ID datasets, it is set to
0.9. All experiments are conducted with Nvidia A6000 GPUs.

Comparison Methods. We conduct experiments on the
CLIP [8] backbone, exploring two primary methodological
paradigms: zero-shot and prompt learning methods. In the
zero-shot realm, we select representative SOTA approaches,
including MCM [33], CLIPN [34], and EOE [36], as foun-
dational baseline methods. In the prompt learning methods,
comparisons focused on SCT [15] and related techniques,
including CoOp [48], LoCoOp [14], ID-like [11], LSN [12],
NegPrompt [11], and SCT itself. Additionally, post-hoc meth-
ods (MSP [29], Energy [30], and MaxLogit [31]) were imple-
mented as supplementary baselines on the CLIP backbone.

Evaluation Metrics. To evaluate OOD detection perfor-
mance, two widely-used metrics are employed: 1) Area Un-
der the Receiver Operating Characteristic Curve (AUROC),
which quantifies the model’s discriminative capability across
different classification thresholds; 2) False Positive Rate at
95% True Positive Rate (FPR95), where lower values indicate
better performance. To assess the impact on classification
performance, the in-distribution testing accuracy (ID-ACC) is
additionally reported.

B. Main Results

Comparisons on Far OOD Detection. Table I presents a
comprehensive comparison of the state-of-the-art CLIP-based
zero-shot and prompt learning methods, benchmarked on the
large-scale ImageNet-1k as ID dataset. After 16-shot fine-
tuning, TAC achieves remarkable performance across four
OOD datasets, with an average FPR95 of 24.43% and AUROC
of 93.70%. In contrast to SCT, which introduces modula-
tion factors to calibrate pseudo-image outliers regularization
training, TAC demonstrates superior performance by utilizing
only textual outliers. TAC exhibits exceptional performance
on the iNaturalist dataset, with FPR95 dramatically reduced
to 7.65% and AUROC elevated to 98.44%. For Places365,
our method surpasses the current SOTA level, while for SUN,
TAC’s performance closely aligns with the current SOTA
approaches, demonstrating the method’s robustness and gener-
alizability across diverse benchmark datasets. Distinguishing
from approaches like NegPrompt and LSN that incorporate
negative prompts for OOD training enhancement, TAC focuses
exclusively on positive prompt training. Compared to these
methods, TAC yields significant improvements, with average
gains of 2.18% in AUROC and 12.91% in FPR95. EOE
represents the latest CLIP-based zero-shot method, and TAC’s
1-shot approach demonstrates a breakthrough by improving
the FPR95 by 1.92% compared to EOE. In the 1-shot setting,
TAC achieves SOTA performance with an average FPR95 of
28.17% and AUROC of 92.87%, representing improvements
of 2.92% and 0.83% over SCT, respectively.

The method’s versatility is particularly noteworthy, as it can
be integrated as a plugin to enhance existing approaches. When
TAC is merged with SCT, leveraging multi-modal outlier data,
it demonstrates significant potential for further performance
optimization across different benchmark datasets. In the 16-
shot fine-tuning scenario, this combined approach achieves a
remarkably low average FPR95 of 23.10% and an impressive
average AUROC of 94.19%. For more detailed results, please
refer to Table IV and Section V-D.

Comparisons on Near OOD Detection. Table II presents
the comparative results for near OOD detection tasks. TAC
demonstrates exceptional performance across both FPR95 and
AUROC metrics on the ImageNet-10 and ImageNet-20 de-
tection benchmarks. In experiments using ImageNet-10 as ID
dataset, TAC achieves a remarkably low FPR95 of 3.90% and
a high AUROC of 98.73%, establishing strong performance
metrics for near OOD detection. When utilizing ImageNet-
20 as ID dataset, TAC maintains competitive performance,
delivering improvements of 1.90% in FPR95 and 0.80% in
AUROC compared to baseline methods. Note that δ is set
to 0.85, we exclude outlier class labels whose similarity
to ID class labels exceeds 85.00%, preventing ID sample
misclassification. Overall, TAC achieves average performance
across near OOD benchmarks, with an FPR95 of 5.55%
and AUROC of 98.64%, significantly outperforming alterna-
tive approaches. These results demonstrate TAC’s consistent
effectiveness across different dataset configurations in the



TABLE I: Comparison results on Far OOD benchmarks. We use ImageNet-1k [42] as ID. We use CLIP-B/16 as a backbone.
Bold values represent the superior performance. ↑ indicates larger values are better, and ↓ indicates smaller values are better.

iNaturalist SUN Places Texture Average

Method AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

CLIP-based zero-shot methods
MSP 77.74 74.57 73.97 76.95 72.18 79.12 74.84 73.66 74.68 76.08
Energy 87.18 64.98 91.17 46.42 87.33 57.40 88.22 50.39 88.48 54.80
MaxLogit 88.03 60.88 91.16 44.83 87.45 55.54 88.63 48.72 88.82 52.49
MCM 94.61 30.91 92.57 37.59 89.77 44.69 86.11 57.77 90.77 42.74
CLIPN 95.27 23.94 93.92 26.17 92.28 33.45 90.93 40.83 93.10 31.10
EOE 97.52 12.29 95.73 20.40 92.95 30.16 85.64 57.53 92.96 30.09

Prompt learning methods
1-shot

CoOp 91.40 43.80 92.65 35.42 90.49 40.70 87.95 49.61 90.62 42.38
LoCoOp 94.05 28.81 94.51 25.76 91.59 33.68 86.85 51.53 91.75 34.95
ID-Like 97.65 12.07 91.07 40.55 88.31 47.94 89.67 38.34 91.68 34.73
LSN 87.20 59.28 91.47 40.15 88.74 46.11 83.92 60.34 87.83 51.47
NegPrompt 84.56 65.03 89.63 44.39 86.55 51.31 63.76 87.60 81.13 62.08
SCT 95.70 19.16 94.58 23.52 91.23 32.81 86.66 48.87 92.04 31.09
TAC 97.32 12.44 94.63 23.46 92.31 30.23 87.21 46.56 92.87 28.17

16-shot
CoOp 93.92 28.25 93.13 31.15 90.50 39.12 90.40 41.86 91.99 35.10
LoCoOp 96.30 17.58 95.20 22.82 92.03 32.21 88.86 45.27 93.10 29.47
ID-Like 98.05 9.71 90.54 38.93 88.06 47.06 91.89 32.82 92.14 32.13
LSN 92.66 36.17 93.53 34.27 90.52 41.47 89.38 46.43 91.52 39.59
NegPrompt 90.49 37.79 92.25 32.11 91.16 35.52 88.38 43.93 90.57 37.34
SCT 95.86 13.94 95.33 20.55 92.24 29.86 89.06 41.51 93.12 26.47
TAC 98.44 7.65 94.72 21.79 92.45 29.71 89.18 38.56 93.70 24.43

TABLE II: Comparison results on Near OOD benchmarks. We
use ImageNet-10 as ID.

Method ID ImageNet-10 ImageNet-20 AverageOOD ImageNet-20 ImageNet-10

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

CoOp 98.21 7.20 98.23 12.40 98.22 9.80
LoCoOp 98.29 5.90 98.45 8.80 98.37 7.35
SCT 97.69 6.50 98.45 8.40 98.07 7.45
TAC 98.73 3.90 98.54 7.20 98.64 5.55

challenging task of near OOD detection, with performance
metrics significantly surpassing existing approaches.

C. Ablation Study

Influence of Textual Data on OOD Detection. To investigate
the impact of ID textual data and outlier textual data on OOD
detection performance, we conduct ablation studies. While
maintaining the same configuration as the main experiments,
we perform evaluations on the far OOD benchmark. Table III
presents the ablation results, where α and β represent the
weighting coefficients for ID textual data and outlier textual
data in the training process, respectively. The experimental
results demonstrate that without any textual data, the model
achieves an average FPR95 of 31.16% and AUROC of 91.69%
across the four datasets. Upon incorporating ID textual data,
the average FPR95 significantly decreases to 27.95% while
AUROC improves to 92.60%. Further integration of outlier
textual data yields additional performance gains, reducing
FPR95 to 24.43% and increasing AUROC to 93.70%.

These results indicate that incorporating textual data signif-
icantly enhances OOD detection performance. On the iNat-
uralist dataset, the configuration with complete textual data
substantially improves performance compared to the baseline.
This performance improvement likely stems from the rich
semantic information provided by textual data, which enhances
the model’s ability to discriminate between ID and OOD sam-
ples. Notably, different types of textual data exhibit varying
degrees of impact across datasets. Specifically, ID textual data
demonstrates the most significant performance improvement
on the iNaturalist dataset. Meanwhile, the introduction of
outlier textual data shows the strongest effect on the Places
dataset. This variability suggests that the effectiveness of
textual data may be closely related to the inherent feature
distributions of different datasets.

Cross-LLMs Performance Analysis. We conduct experi-
ments across multiple LL-Ms, including LLaMA2-7B [23],
Claude-3.5 [39], ChatGPT-4o [38], and Deepseek-V3 [24].
As shown in Fig. 5, the experiments use ImageNet-10 as ID
dataset and ImageNet-20 as OOD dataset. The results demon-
strate that our method consistently outperforms both the CoOp
baseline and the image outlier detection method SCT across
all LLM configurations, validating the method’s robustness
and generalizability across different language model architec-
tures. Specifically, both ChatGPT-4o and Deepseek-V3 achieve
superior FPR95 performance. ChatGPT-4o demonstrates the
strongest performance with FPR95 of 3.90% and AUROC
of 98.73%, likely attributed to its robust contextual under-
standing and precise grasp of visual concepts. Deepseek-V3
follows closely with FPR95 of 4.10% and AUROC of 98.47%.



TABLE III: Ablation study on the effect of ID and outlier textual data in the prompt learning process, where the weighting
coefficients are either zero or non-zero. ✗ indicates that the weight coefficient is set to zero, while ✓ represents a non-zero
coefficient.

iNaturalist SUN Places Texture Average

α β AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

✗ ✗ 96.56 14.66 92.67 29.20 89.82 36.88 87.70 43.90 91.69 31.16
✓ ✗ 98.19 7.87 93.18 26.02 90.72 34.13 88.30 43.97 92.60 27.95
✗ ✓ 97.75 10.56 93.93 23.72 91.53 30.94 87.84 43.40 92.76 27.16
✓ ✓ 98.44 7.65 94.72 21.79 92.45 29.71 89.18 38.56 93.70 24.43

Claude-3.5 ChatGPT-4o LLaMA2-7B Deepseek-V3
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While LLaMA2-7B and Claude-3.5 exhibit relatively lower
performance, they maintain effective detection capabilities.
These findings indicate that various LLM architectures can
effectively support OOD detection tasks, with model selection
significantly impacting performance outcomes.

Evaluating Key Principles in LLMs query template. To
validate the effectiveness of Visual Similarity and Feature Dis-
tinctiveness principles in LLMs query templates, we conduct
controlled experiments. Based on our original LLMs query
template design, we construct two variant prompts: a general
similarity prompt and a general feature descriptive prompt.
The general similarity prompt instructs LLMs to generate
similar but different categories without emphasizing visual
similarity constraints, while the general feature descriptive
prompt asks LLMs to describe general features of categories
without emphasizing feature distinctiveness. As shown in
Fig. 6, experimental results on the ImageNet-10 benchmark
demonstrate that without two principles, OOD detection per-
formance degrades to varying degrees in both FPR95 and
AUROC metrics. We posit that the visual similarity constraint
helps bridge the gap between LLMs and VLMs in similarity
perception, while feature distinctiveness enables LLMs to
transfer more effective text-level classification knowledge to
VLMs. The synergistic effect of these two principles provides
substantial support for improving OOD detection performance.

D. Further Analysis

Impact of Multi-Modal Joint Training on ID Accuracy. To
investigate the impact of different class distributions and multi-
modal joint training methods on ID accuracy, we present
the ACC comparison results of various methods in Fig. 7.
It shows that the ACC obtained using our proposed training

approach is almost identical to the baseline, with the baseline
ACC in 16-shot at 72.13% and the ACC of our method at
71.99%. This minimal difference indicates that our method has
only a little negative impact on ID classification performance.
Furthermore, despite the negligible decline in ID accuracy, our
method significantly outperforms other advanced OOD train-
ing methods in OOD detection on the large-scale ImageNet-1k
benchmark. This demonstrates the effectiveness of our method
in balancing ID classification and OOD detection, highlighting
its unique advantages. Our method achieves an unprecedented
1-shot ACC of 69.44%, surpassing all comparative approaches
and demonstrating exceptional fine-tuning efficiency under
ultra-low data regime scenarios.

Enhancing OOD Detection via Plugin Integration. By inte-
grating TAC into diverse baseline methods, we observe consis-
tent improvements in OOD detection performance, as shown
in Table IV. The plugin strategies across different approaches
demonstrate TAC’s remarkable adaptability: LoCoOp+TAC
provides multimodal outlier regularization training, SCT ap-
plies adjustment factors to optimize visual outlier training,
and EOE incorporates outlier data simultaneously in inference
and training. Experimental results reveal that integrating the
TAC plugin consistently enhances baseline methods’ average
AUROC and FPR95 metrics. Particularly, the SCT+TAC com-
bination achieves optimal performance, with an average AUC
of 94.19% and FPR95 reduced to 23.10%, substantiating the
method’s effectiveness. These findings not only validate TAC’s
potential as a universal plugin but also illuminate a novel
paradigm for cross-modal anomaly detection.

Performance Evaluation in Various Few-Shot Scenarios. To
comprehensively evaluate the performance of our method in
few-shot learning scenarios, we conduct comparative exper-



TABLE IV: OOD detection performance by integrating TAC into various baseline methods in ImageNet-1k benchmark.

iNaturalist SUN Places Texture Average

Method AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

EOE 97.52 12.29 95.73 20.40 92.95 30.16 85.64 57.53 92.96 30.09
EOE+TAC 98.45 7.34 95.76 20.31 92.43 29.84 89.32 39.65 93.74 24.29
LoCoOp 96.30 17.58 95.20 22.82 92.03 32.21 88.86 45.27 93.10 29.47
LoCoOp+TAC 97.59 11.36 95.21 21.04 92.48 29.22 89.37 37.68 93.66 24.83
SCT 95.86 13.94 95.33 20.55 92.24 29.86 89.06 41.51 93.12 26.47
SCT+TAC 98.36 9.76 95.94 18.66 92.99 27.27 89.76 36.72 94.19 23.10

TABLE V: OOD detection performance across different few-shot settings with ImageNet-10 as ID and ImageNet-20 as OOD.

1-shot 2-shot 4-shot 8-shot Average

Method AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

CoOp 97.92 9.40 98.12 6.10 98.18 7.00 98.16 7.10 98.10 7.40
LoCoOp 97.93 9.40 98.25 7.30 97.98 5.30 98.12 7.00 98.07 7.25
SCT 98.16 6.00 97.25 10.60 97.98 6.80 97.99 7.90 97.85 7.83
TAC 98.68 3.50 98.48 5.70 98.37 3.60 98.21 6.50 98.44 4.83

iments on the ImageNet-10 OOD benchmark using 1, 2, 4,
and 8-shot settings. The experimental results are presented in
Table V. In the 1-shot scenario, the TAC method demonstrates
a significant performance advantage, achieving an FPR95 of
only 3.50%, which is substantially lower than that of other
methods. This indicates that our approach exhibits exceptional
out-of-distribution detection capabilities under extremely lim-
ited data conditions. As the number of samples increases,
the TAC method maintains a relatively stable performance.
On average, our method achieves an FPR95 of 4.83% and
an AUROC of 98.44%, showcasing more consistent and
reliable performance compared to other baseline methods.
These results provide strong evidence for the effectiveness and
generalization potential of the proposed method.

VI. CONCLUSION

In this work, we propose a novel OOD detection paradigm
by leveraging LLMs to augment VLMs’ capacity to identify
OOD samples in few-shot scenarios. Employing query tem-
plates grounded in Visual Similarity and Feature Discrimi-
native principles, we extract semantically distinctive category
representations from LLMs, constructing a cross-modal outlier
representation space. Through a visual-textual collaborative
optimization mechanism, we integrate LLM-generated textual
outliers as regularization constraints, guiding VLMs to syn-
chronously learn ID category-specific features and potential
outlier distribution patterns during prompt learning. Experi-
mental validation across multiple benchmarks demonstrates
significant performance improvements over existing CLIP-
based OOD detection approaches. However, the alignment
between text and visual feature spaces in VLMs still has
the potential for enhancement. Future research could focus
on bridging the gap between text and image modalities to
further enhance the effectiveness of textual information in
OOD detection.
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